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ABSTRACT

The propagation of galactic cosmic rays in the interplanetary medium
is examined apd a transport equation for the cosmic ray energy spectrum
is derived. By constructing a Boltzmann equation for the cosmic ray phase
space distribution function and by takifig velocity moments over directions
in momentum space, the continuity and momentum conservation equations for
each energy element of the cosmic ray gas are obtained. The effect of
s-zattering (by magnetic irregularities) on the distribution function is
treated by a Fokker Planck equation while the effect of scattering on the
differential streaming velocity is treated by means of a relaxation
approximation. By linearizing the momentum equation, we obtain expressions
for the differential streaming velocity at an arbitrary point in the medium
in terms of the local energy spectrum, The value of the first Fokker Planck
coefficient is evaluated and found to represent adiabatic cooling of the
cosmic ray gas while an additional deceleration arises from streaming along
a polarization electric field. The resulting transport equation for the
energy spectrum reduces to the equation Parker (1965) studies if the effects

of the interplanetary polarization electric field are neglected.



INTRODUCTION

The detailed understanding of cosmic ray propagation in the
interplanetary medium is currentliy of special importance because
measurements on low energy cosmic rays, which are believed tc be
most sensitive to solar effects, are only now being widely carried
out. The low energy data (e.g. Fan, etal. 1965) have revealed a
number of unexpected properties of the cosmic ray energy and charge
spectrum and as more data is collected in the present years approach-
ing solar maximum it will become increasingly impcrtant to know the
extent of the influence of solar mcdulation on the data.

A large amount of theoretical work has been devoted to the
modulation problem and the present work is closely related to the
calculations of Parker (1965), Axford (1965), and Quenby (1966), in
particular. One of the aims of the present calculation is to indicate
the relationship between these approaches to the modulation problem
and to show that a generalization of Axford's technique leads tc Parker's
equation of motion for the energy spectrum if certain approximations are
made,

In Axford's approach to the problem, the cosmic ray motion is
separated intc continuous flow {due to a steady electromagnetic field)
and scattering (due to fluctuations in the fields) by means of a Boltzmann
equation in which the collision term represents the cosmic ray scattering
by field fluctuations. Then by taking moments of this equation with respect
to ¥V over all velocity space, Axford obtains equations for the .cosmic ray
number density and streaming velocity. These equaticns are then solwved

and give Parker's well known exponential modulation facztor for the number




density as well as general expressions for each component of the streaming
velocity.

Throughout his entire analysis Axford was concerned only with the
intensity and streaming of the total cosmic ray gas, irrespective of
any effects of the mcdulation on the cosmic ray energy spectrum., In
Quenby's work there is also discussion of the deceleration of cosmic
rays as they diffuse throughout the solar system. This deceleration
is pictured as arising from two phenomena. In the first place, the
outward flow of the solar wind creates a polarization electric field
and it may be shown that cosmic rays which drift due to the magnetic
gradient in the interplanetary field also drift against the polariza-
tion electric field, and hence lose energy. Secondiy the magnetic
irregularities responsible for the cosmic ray scattering expand with
the solar wind and this produces an overall Fermi deceleration of
the cosmic rays as the rebound from the diverging irregularities.
Quenby obtains deceleration rates due to these processes and then
estimates the effect of this deceleration on rthe energy spectrum of
the incoming cosmic rays.

In the present work we wish to treat the modulaticn due to
deceleration in a mere unified way and we shall do s¢ in & manner
suggested by Axford's work. Namely, starting trom the same Boltzmann
equation, we shall take moments of this equaticn with respezt to ¥
but only over directions in velocity space. In this way we are led to
coupled transport equations for the cosmic ray energy spectrum and
differential streaming velocity, rather than for the cosmic ray number
density and streaming velocity. These equations therefore have built
intc them not only convection, diffusion and stresming but also, the

cosmic ray energy loss due to the steady electromagnetic tield and scattering.




We dc not consider

solutions for the energy spectrum however, and
therefore are not proposing a specific mocdulation tftunction at this
time,

OQur discussion centers exclusively on the transport equation

itself.
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TRANSPORT EQUATIONS FOR THE ENERGY SPECTRUM AND STREAMING VELOCITY

The interplanetary space through which cosmic rays pass is known
to possess a magnetic field which is being transported outward from the
sun by the solar wind. To a first approximation this field has an
appearance, as shown in Figure 1; and we shall make use of the following
properties of the field in the present calculation.(l) The average

magnetic field at any point T in the ecliptic plane is given by

= Z0y2 = - =l
Br - Bo(ro)(r )7, BG =0, B¢ - VO Br

where { is the angular velocity of the sun, V0 is the solar wind speed
and Bo(ro) is the solar magnetic field at the base of the field line
passing through T. (2) The above magnetic field is observed to lie
in sectors or tubes of fixed magnetic polarity, and we .shall further
assume that Bo(ro) is constant within a given sector so that B(T) is
static as long as r remains within that sector. (On a time scale of
weeks, however, alternating sectors sweep past T so that B(Y) has a
time dependence which is stvong during the passage of sector boundaries.)
(3) The average solar wind blows radially, with uniform speed everywhere
in the ecliptic and is only a weak function of time, The flow of the
solar plasma past T in the presence of the above magnetic field produces
a pclarization electric field, E = -50 X E, which is static as long as T
remains within a given magnetic sector. However, the sense of this
electric field reverses as a neighboring magnetic sector of opposite
polarity sweeps past T.

The above description is an idealization which applies only to the

average, quiet interplanetary electromagnetic field; the true fields are



fcund to be much more complicated. There are variations in magnetic field
strength and solar wind speed over the svlar surface and there are instabil-
ities in the plasma which produce waves or fluctuations which are super-
imposed on the quiet electromagnetic field. In fact, the power spectrum
of these waves in the spiral magnetic field has already been measured.
(e. g, Holzer etal. 1966).

We are now interested in the propagation of cosmic rays through
the above electromagnetic field and shall specialize our present discussion
to particles with 10 MeV < E < 200 MeV, so that we can keep the analysis
non-relativistic. The generalization to relativistic particles is simple
and can be carried out later., Particles in the above energy range have
gyration radii small compared with the scale size of the unperturbed magnetic
field and therefore a particulsr cosmic ray particle will guide adiabatically
along B(¥) and will drift slowly normal to B, with velocity,

= _E

5 -—-—-—B’z‘ B +-EE x [27(B] + mk]

where . is the particle orbita: magnetic moment and E iz the azceleration

ot its guiding center. Theve are two aspects of this adiabatic motion which
play an Lmportant role in the modulation of galactic cosmic rays. (1) Far
from the sun where the magneric iield is essentially azimuthal, the electric
driit carries particles radially outward at the soiar wind velocity. (2) The
combined gradient and curvature drift moves particles in a polar direction with
a drift velocity essentially proporticnal to the kinetic emergy of the particle.

Furthermore, this dritt velocity is slways in a direction such that



and thus, all drifting particles (whether electrons or nuclei, or whethar

B is directed toward or away from the sun) lose energy. The unperturbed
interplanetary field therefore has the two properiies of carrying particles
out of the solar system as well as decelerating them.

The total electromagnetic field is of courze the unperturbed field
plus the fluctuations, 6B and 6E and the fluctuations give rise to forces
which displace or scatter particles out of their idealized helices.
Furthermore, the fluctuations responsible for the scattering tend to be
carried outward by the solar wind and therefore comprise an ezpanding
magnetic configuration from which the particle scatters. The particle
therefore suffers a Fermi deceleration which is distinct from the
deceleration discussed above, Perturbations in the interplanetary field
therefore have the properties ot scattering and cooling the particles.

We now wish to consider a distribution of cosmic rays of a fixed
species having velccity v at the positicn r at time t3 f£(¥,%,t). This
distribution function evolves in time due to the steady unperturbed

Lorentz icrce,

and due to the scattering imparted by the irregularities, ¢F. The

continuity cf particle flow in phase space is expressed by the Boltzmann

equation,
af {x_,v, t) Caf Fiog :‘f) (D
== 17 1 T VT e e
ot i9x m ov oty



where 3f/at)( is the rate at which particles are scattered into the

volume element at (xi,v:) by magnetic irregulsrities. The distribution
i

function f is more detailied than necessary for our present purposes
because cosmic ray weasuvements generally give only a speed. (or energy)

distribution of the particles. That is, the quantity which is observed

and which shall be of interest to uz here will be
[ .. 2
h(xi,v,t) = J f(xi,vi,t)v dat (2

where the integration is over all directions on the shell v = constant

in velocity space. The quantity h is essentially the cosmic ray energy

spectrum at X, at the time, t. The average value of any function of the

velocity A(vi) averaged over all particles of speed, ]vil is then

o | o
A\vi}f{xivi_)v dn (3)

=gl P

In osrder to obtain the transport equation satisiied by h, one may
integrate equation L term by term cver the shelli, v = c¢onstant. This
integration can be carried out (see Appendix A) and gives

Shix,ve), _5_, qF; ¢

N R A =

sh/at) (4)

where vy is the average (or streaming) velocity of particles with speed

v (hereafter called the differential streaming velocity) and ah/at)c is the
rate at which cosmic rays are scattered into the speed v at X, This
equation merely states the continuity of partizie flow in (xi,v) space.

It 1s important to note the difference between the above continuity

equation and the usual continuity equation in coordinate space for the



iclc number densiry, The last two terms, which are absent in the

usual continuity equation, indicate the fact that there is a source of
particles with speed v at X, - Specifically, the steady electric field
as well as scattering can produce particles of speed v from particles

at other speeds.

Altrhough equation 4 is a transport equation for h which suitably
contains all the propagation and deceleration effects due to F and Gf,
it also contains the differential streaming velocity which at present
is an undetermined quantity. We therefore wish to obtain an equation
of motion for the differential streaming velocity, and this may be done
by taking the moment of the velocity vj over the spherical shell v =
constant in velocity space, for each term of the Boltzmann equation.
Defining the random velocity Wy by LA PR PR the resulting

equation is (see Appendix A)

degy 3-vs> qE <V h 3 qE; 5 1]
R - P J =1 . _— =2 . oLl 27 9 2 T
bl dt Ty §§l + v i T ov ] m gEj Xy S(v) m Jv ( v )
- <y_> gh/ot) + P (5)
3 ¢ ]

where

i i3
sl = hewlwl-
{(v)
is the stress tensor asscciated with the random motion of particles with
speed v. Also,

N
h| NEL



is the rate at which scattering increases the momentum of particles

with speed v. Equation 5 is a dynemical equation which states that an
acceleration o1 the (xiwxi‘f Axi, v+ v + 4v) element of the cosmic ray
gas results from (1) the presence of applied forces, (2) a net flow of
momentum into the (Axi,iv) element and (3) a net scattering of momentum
into the (&xi,Av) element of the cosmic ray gas. We now have an equation
for ﬁvjv, as desired, but the equation involves an undetermined stress
tensor which is second order in the velocity. Taking further velocity
moments of the Boltzmann equation only produces a heirarchy of equations
which involve successively higher order correlations in the particle

velocities, and therefore a closed set of equations for h,<vj>, std, ete.

cannot be obtained in this way. Instead we shall make some simplifying
approximations which make equations 4 and 5 tractable.

We first examine the random velocity stress tensor. The cosmic ray
gas as a whole is obéerved to be nearly isotropic; that is the streaming

velocity,

3“ -
v =

nu, = j v, f(x. v, t)d
i i i'i

v r h(v)dv
J
nearly wvanishes. The diiferential streaming velocity however can not

in genetal be zero in the steady state since, from equation 4

Nevertheless, we shall assume that particles at a particular v are not
. . : <13 , . . .
far from isotropic so that S ] may be represented as diagonal and having

equal components:

Sij = i"_*‘"i J :%hf 2 'flJ ‘% [\’,72 2!61‘] (6)



Furthermeore since the differentizi streamiang velocity will be small

ccmpared with the particle velocity, our approximatiosn becomes
S = == 7
3 ™

We now wish to simplify the collision terms apprearing in equations 4 and
5, Let us first examine equation 4. This equation gives the net rate at
which cosmic rays accumulate at (xiv) dae to the simultaneous action of
applied forces, spatial flow and scattering. We may focus our attention
on scaltering alone by "switching off" the steady forces and gradients;
that is, let us consider a uniform field-free region. In this case
particles accumulate at (xiv) due to scattering alone. If we assume
that the particles are scattered in a compietely random manner by the 6F's
then our field-rfree, gradient-free distribution should satisfy (see

Montgomery and Tidman, 1964)
h'(xi,v,t) = h'(xi, ¢ = Av, © = At) P(v - Av,v)div (8)

where P(v - iv,3%) 1is the transition probability fer scattering from
v — &v to v in the fixed time, ot where vt includes many scatterings.
If the integrand is expanded in a powe: series in Av and At about

{(v,t) then one obtains the Fokker-Planck expansicn,

2 2
sh' 5 . Av- 1 03 vt o "
g '-avlzth‘*zh[at h] + < .« - s (9)
<(an)™ = | iy

We shall later demunstrate that only the first term is important. Then

I oh' 3 .
associating o= with 3%3 , equation 4 may be rewritten



10

oh o . . 3 .. qEicvy <Ay> )
— 4+ 7 {(hv,r} + — [h ( i —— 1 =0 (10)
Jt. Sx; i 3v v at

Let us next apply an analagous approach to equation 5. This
equation gives the differential streaming wveiccity which results from
the simultaneous action of applied forces, gradients and scattering, and
once again we can isolate the effects of scattering by considering a
field—ffee, gradient—free configuration in which the transient response

of <vj> is given by

|3;V__j:_q_i, y o
h v Pj vj 3t (11}

1f we now recall certain basic properties of our interplanetary model,
we can approximate the solution to the above equation. Since the
scattering is caused by a distribution of randomly oriented magnetic
irregularities, we may assume that the deflections produced in a cosmic
ray trajectory are isctropic in the rest frame of the irregularity.
However since the irregularities move radially cutward with the solax
wind speed they will transifer a net outward momentum to the particles,
end the particle difterential streaming velocity will gradually zelax

from its initial value to the soliar wind velocity:

R Y oW o vy vyt T Vo
¢ 3T o’ ¢ ® vy = T e LR )s OT T T T EE T (12)
g (o}

where i(xiv) is the relaxation time or characteristirs time needed for
the §F's ro eifectively scatter particles of speed v at yo We have
thus introduced T in a phenomenological way as a relaxation time for the

differential streaming velocity. Jokipii (1966} and Roeclef (1966) have



11

also obtained a relaxation time but in a more fundamental way from a
statistical description of the particle motion through the irregularities.

Using the result of our relaxation approximation in equation 11, we obtain

.

as the scattering contribution to <vj>o Equation 5 then becomes

A<y > 3w s> E. <y I 2 .
TR L L. BN N Sy 8
5t i 9x, mv i ov m k| 3 o9x, ,
* 3 (13)

E. 1 <ga Y
q]_a__(ﬂ)_h( '3 Vo)

m B‘V 3 Tr
(x iV)

where use has also been made of equation 7. The preceding approximations
have therefore led us to two equations (equations 10 and 13) which involve
only the energy spectrum h and the differentisl streaming velocity <vj>,
Once the relaxation function 1 and the Fokker—Planck coefficient <Av>/it

are evaluated, these equations are in principle solvable.
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PROPERTIES OF THE TRANSPORT EQUATIONS

In order to simplify equation 13 we shall again make use of the
fact that the differential streaming velccity is small, and we shall
accordingly neglect the quadratic terms in equation 13. We are interested
in steady state solutions and therefore the linearized momentum equation

becomes

vo oh 3% 3 hy
‘ 3

h h
) + L (', + [vv> x B],) + =(V_ -<v.> 14
@ 1)+ mv) (8)
Equation 14 comprises three algebraic equations and recalling the forms
of ﬁb, E () and B(Y) these equations may be solved simultaneously for
<vj>. We have already assumed azimuthal uniformity within a given

magnetic sector and therefore 3/9¢ = 0, The solutions are emsily found

to be
L2 2 dh oh 22 Y 5 hv
< = =(1+ » — w T —_— - BT ——— (=
h Vr (1 mr T )K.L 3 + .»:PTK‘L 35 ..Jq) 1+sz2 v (3 ) + hVo (153)
. sh 3h . Vo 3 hv ~
hevgr = %gKigr “Kiae T2z By 30 (15b)
3h B %% v 5 oh
e oh . . a_zpf‘ ;] ¢ .hv .
b,'d;,¢. = .,\)¢LDI:'.2£<J_ 3t T wr‘K-L L 58 | 2.2 (o] 3v \3) (150)
lT,‘_u '
qlBi! VZI
where w, = » Ky = ———> - With the definitions,
1 m 3(1‘*"_),, T )
22 2
1 + ‘.Dr i »¢ 3 “Uz,hwrt
Kij = KL -w¢r 1 -wrr
-W W T - T l'ixwzvz
¢ r r ¢
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w, 7V 'QTQEX)
C - ¢ O X% 3 ( - l " )
P E i, v e Tl
3 1+ wZIZ ¢

equation 15 may be written

hev,> = hv 63 — k. 2B _ ¢ (16)
j o ij ox, j
i

The coefficient Kij(;) is seen to be a spatial diffusion temnsor for
particles scattering from irregularities in the spiral magnetic field
and Cj is a flow vector which arises from deceleration of particles in
the steady field, E(r). Equation 16 thus determines the differential
streaming velocity at a point r in terms of the local energy spectrum.

If equation 16 is substituted into the continuity relation,

equation 10, one obtains

r . acu qu
sh o - oh . i 3 <pv> i<v,>y, _
be T M TRy e TR T L e T 0 A

as the transport (or Fokker-Planck) equation for the cosmic ray energy
spectrum, In Appendix B, it is demonstrated that the scattering of cosmic
rays in the expanding solar wind leads to an adiabatic cooling, and as long
as the particle speed is large compared with the solar wind speed, the
kinetic energy also decreases adiabatically. This was first pointed out

by Parker (1963). Hence,

LV 2y
it 3r ©

With this value of the Fokker—Plianck ccefficient, equation 17 differs

from the equation Parker (1965) studies only by the additional terms,



. e}
3 - qu vi>i ~ C,
: mv N Xj

Qi

Since both terms wvanish it Ei = 0, it appears that our transport equation
reduces to Parker's equation in the sbsence of a steady electric field in
the interplanetary medium. It is not clear however that neglecting the
electric field is justifiable, Only in the case that the spiral magnetic
field is completely obliterated by the irregularities would the steady
electric field vanish, In this case we would alsc expect wr << 1 so that
the particle diffusion is isotropic., Our analysis, on the otherhand, has
anisotropic diffusion implicitly built in by our specification of a well
defined large scale magnetic field in the ecliptic plane. To treat the
case for which the spiral magnetic field is dominated by the magnetic
irregularities using our formulation of the problem, we would let
|6B| »> |B|. Thenl|E| = iVO x B| and !le would also be negligible and
we would regain Parker's equation.

Equation 16 is an interesting result in its own right since it gives
us each component of the streaming velocity and its energy dependence.
Contrary to the total streaming velocity of the cosmic ray gas, none of

the components of fvj“ vanishes, in general.
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SUMMARY

In the present work we have been interested in the derivation and
properties of the transport equation describing the variation of the
cosmic ray energy spectrum within the interplanetary medium. The
fundamental properties of the interplanetary medium which determine
the modulation are (1) the underlying spiral magnetic field, (2) its
associated electric field, (3) the irregularities in the magnetic
field and (4) the flow properties of the solar wind. The combined
effects of the spiral magnetic field and its irregularities cause
particles to partially guide along and diffuse across magnetic field
lines. The scattering by irregularities can be characterized by a
relaxation time which is defined as the time needed for scattering to
isotropize particles of a given energy, and such a description of the
scattering implies that particles undergo diffusicn according to a
diffusion tensor which is determined by the relaxation time and the
spiral magnetvic tield. A prescription for calculating this relaxation
time irom the power spectrum cf the magnetic iyregularities has been
given by Jokipii (1966) and Roelof {1966). By discussing the diftusion
in terms of z relaxation time instead of a "mean free time" it becomes
possible to discard the unrealistic picture of 1sclated scattering
centers separated by an energy dependent mean free path. The electric
field normal to the ecliptic gives rise to particle deceleration and
this deceleration modulates the energy spectrum if there is streaming
along the electric field direction. The scattering from magnetic

irregularities alsc gives rise to a deceleration which is
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literally an adiabatic cooling of the particles,

The transport equation we derive gives the combined effect of all
the above processes on the cosmic ray energy spectrum and our equation
reduces to Parker's equation (Parker, 1965) in the absence of a steady
electric field. Our analysis also determines the differential streaming
velocity of cosmic rays at any point in the ecliptic in terms of the

local energy spectrum.
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Figure 1.

Figure 2.

FIGURE CAPTIONS

Interplanetary Field Model. The sector structure of the
average magnetic field is illustrated by means of two sectors
of opposite polarity. The electric field is out of the

ecliptic in one sector and into the ecliptic in the other,

One Dimensional Model of Adiabatic Cooling. Magnetic
irregularities are represented by the artifice of pistons
of area A located at X_oooo0 o X receding azimuthally

with velocities v I A with respect to x = 0.
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APPENDIX A

In the following paragraphs we outline the steps leading from
the Boltzmann equation to equations 4 and 5. To arrive at equation 4,
we evaluate the integrals occuring in the Boltzmann equation, integrated

over v = constant in momentum space:

F
3h 3 2., Fi3f 2., _ 38R
vl j \ o, vidQ' + I = S;Z'V det = < A (Al)

To facilitate the angular integration we choose spherical coordinates
as the intependent variables in phase space — r, 6 and ¢ representing
a position and v 6' and ¢' representing a velocity. The second term

becomes

3d 2., __0 2, _ 0 .
I v, — v da' = - j vifv an' = 3;; (h vif) (A2)
since X and v, are independent variables. The third term becomes

» FQ
J L3 24 =L I 2 (£ 7)) viag'
m N 1

m v, dv (A3)
1 1

I N P S B I R TS 1
T m J [ §2 v (v va) + vsinb" 86'(Slne Fe'f) + vsind®?

since aFi/BVi = 0 for the Lorentz force. Since dQ' = sin8'de'd¢!, the

second and third terms become

(27,
| e (F, £)dg* ] do' =
9'=0

(sine'Fe,f)de' ] d¢' + j v [

? 2.
8¢'(F¢'t)lv dQ

0
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since the integrand in the first term vanishes and because F, ,f must

¢

have the same value at ¢' = 0 and ¢' = 27. Therefore equation A3 becomes

F
i8f 2., _1(3 .2 .
J m v, v dQ - J 5o (v va) da' =

=N

)
av (<Fv>h)

and since only the electric field has a force component along the particle

velocity,

<F » = q <E.v. >
v v 11

Therefore,
F, ’ h<v, >
CLAf 200 gy 24
m Bvi m i 9v v
so that equation Al becomes
h<v. >
sho 3 4, 8 17, _ o
at M Bxi (h<vi>) + m Ei LAY ¢ v ) = agl (4)

To obtain equation 5 we evaluate the integrals occuring in the

velocity moment of the Boltzmann equation over the shell, v = constant:

| F,
v. 2 G2a0r + | vov, =2 VAo + | v, 225 JZaor = | v, & aor s
j ot ji Bxi jm Bvi 3j atc

Since vj, \ and t are independent variables, the first two terms become

3, ) _ 9 ij
FYe (h<vj>) + 3;; (h<vjvi>) = (h<vi>) + axi [<Vi><vj>h +S77]
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with S as defined in equation 5. Let us now consider the third term

of equation A4, We have that

3f 3 oy d
v.E S = o (V°Fif) - fv, 5o - RS =50 (v"Fif) - F.f
jiev, PR i ovg J i 3 J
Therefore,
F, ¢ F,
v, =23 2o - - fvlae + | == & vPF v.f)vzdﬂ'
j m vy m mv2 v v i

since the angular part of the divergence vanishes as for equation A3.

Hence,
1 F, .
v, L 3f vzdﬂ' =1 [-h<F,» + 2 (h<F v, >)]
jm Bvi m j ov v
<E,v,v, > E, ij h<F,>
S R A e O ) - iy o DA il R |
m v v 3j m 9v - v i j v m
Equation A4 therefore becomes
. . qE. ij h<F,>
2 (h<v,>) +_8___ [<v,><v, >~ +SlJ] +__1_3__ [ E<Vai-><iv,'> + 5= ] - —1 _p,
at 3j Bxi i ] m v v 1 j v m j

with Pj as defined in equation 5. The above equation may be rewritten as

v, I<v, > qE,<v,> 9d<v, > qE, .
3< - . i i1 ' Y- 2 . i3 h
S T A T v vt t Bxi(h<Yi>)| m vy Vi)
qE. ij
st L 25y B op,
8xi m v v m j 3j
Making use of equation 4, this finally becomes
D<v, > . . qE, ij
: i oh 3 _ii 1 3 . 8§87, h _ Lo P
—_— = <y, > ] ~ == § Y - —= — (/) +=<F,>+ P, 5
® bt vy Btl 8xib m v S v T m j )




In the following paragraphs we consider the cosmic ray energy loss
produced by scattering from field irregularities. In our transport
equation for the energy spectrum, equation 10, this energy exchange is
contained in the Fokker Planck coefficient, <Av-/it, which was defined
in terms of a field-free medium having a uniform cosmic ray distribution.
Under such circumstances one is looking at the scattering without inter-
ference trom tield and gradient effects, and the arguments leading to
the relaxaticn approximation, equation 12, indicate that the streaming
velocity of the particle distribution h' approaches the solar wind
velocity, no matter how the streaming velocity is initially prepared.

A steady state description of the particles comprising h' is therefore
that they stream with the solar wind.

The problem now reduces to considering a distribution of cosmic
rays whose center of mass is at rest in an expanding configuration of
irregular magneti: field. This expansion occurs normal to the direction
of plasma flow, and we shall initially represent the expanding configuration
of magnetic irregularities by the artifice of receding pistons. (See
Figure I1) The pistons are receding with a velocity proporticnal to their
distance from the origin and any pair of pistons defines a cell in which

cosmic rays are confined. To the extent that the particles represent an

ideal gas, the particles within cell Cn,n+l obey
2 dv
vy T _ 1 dkTy 2 _n,ntl
KDV pey™ COPSEaRt, =g = -y dt (B1)
n,ntl

where m is the number of translational degrees of freedom for the particles,

T 1s the particle temperature and V is the volume of cell ¢

n,n+l n,n+l




For the case of expansion in the ecliptic plane only,

av v

_ - -—n’n+l = Afx — = ——
Vn,n+1 B A(xn&l Vn)’ dt Akvnfl vn) A ba (x

Consequently, there is a uniform particle cooling rate,

i awn __2%
kT dt m r (B2)

in all cells, even though particles momentarily gain energy in distant
cells when they rebound f:zom the piston nearer the observer (at the

origin). We may now remove the artifice of pistons and recall that we
are dealing with a random, expanding magnetic structure for which the

vV X
. . . . . . on
x are merely fiducial points having expansion velocities, T o Rather

than being strictly confined, particles now scatter randomly and migrate
from one cell to another. However we have just seen that the cooling rate
is the same in ail cells and is independent of the cell size. Therefore
as long as there is scattering from the expanding configuration, the
particles cool according to equation B2. Equation B2 refers to the
temperature of the distribution of particles, h'(v), which is related

to the speed of the particles according to

kT =
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since we are considering particles initially of the same speed which
, , 2 2 .
are losing speed at the same rate. As long as v- >- v =, equation B2

becomes
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or in the languapge of equation 8,

vVo
LV - = 4 —
P (v - av,AV) S(Av — )

Therefore, the first Fokker Planck coefficient becomes
vV
o

v jht = —= (B4)

The HEE Fckker Planck coefficient becomes

AV VVo o a1
R ( — ) At —> 0 as At -+ 0,

Setting m = 3 and generalizing to the two dimensional expansion of the

solar wind we arrive at

<AV 2V,

it 3r (18)

Our treatment of the cosmic ray cooling may appear questionable since
our results are based upon a distribution of cosmic rays which is streaming
outward at the solar wind wvelocity whereas the cosmic ray gas is istropic
and hence stationary. The resolution of this discrepancy lies in the
definition of the Fokker-Planck coefficient, <Av>/it (equation 9). This
coefficient measures the rate at which scattering changes the particle
speed in the absence of fields and gradients and is therefore calculated
for a test particle (or system of particles) placed in the scattering
regime. After a time longer than the relaxation time, any such system
of particles is streaming with the solar wind, but this system of particles
tremains the appropriate system for calculating <Av-/2t. The fact that

there is another process (diffusion) which creates an overall isotropy
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by introducing new particles to every volume element is therefore

irrelevant. Diffusion causes the set of cosmic rays located within a

given volume element at a particular instant to be isotropic but

<bv>/At concerns itself with what happens to this set of particles

during the next At,



